Many-Sorted Algebras for Deep Learning and Quantum Technology

Many-Sorted Algebras for Deep Learning and Quantum Technology
Author: by Charles R. Giardina Ph.D. (Author)
Publisher: Morgan Kaufmann
Edition: 1st
Publication Date: 2024-02-19
Language: English
Print Length: 422 pages
ISBN-10: 0443136971
ISBN-13: 9780443136979


Book Description
Many-Sorted Algebras for Deep Learning and Quantum Technology presents a precise and rigorous
description of basic concepts in quantum technologies and how they relate to deep learning and quantum theory. Current merging of quantum theory and deep learning techniques provides the need for a source that gives readers insights into the algebraic underpinnings of these disciplines. Although analytical, topological, probabilistic, as well as geometrical concepts are employed in many of these areas, algebra exhibits the principal thread; hence, this thread is exposed using many-sorted algebras. This book includes hundreds of well-designed examples that illustrate the intriguing concepts in quantum systems. Along with these examples are numerous visual displays. In particular, the polyadic graph shows the types or sorts of objects used in quantum or deep learning. It also illustrates all the inter and intra-sort operations needed in describing algebras. In brief, it provides the closure conditions. Throughout the book, all laws or equational identities needed in specifying an algebraic structure are precisely described.

  • Includes hundreds of well-designed examples to illustrate the intriguing concepts in quantum systems
  • Provides precise description of all laws or equational identities that are needed in specifying an algebraic structure
  • Illustrates all the inter and intra sort operations needed in describing algebras

Review

Presents the algebraic underpinnings and basic concepts in Quantum Theory and how they relate to Deep Learning and Quantum technologies


From the Back Cover

Many-Sorted Algebras for Deep Learning and Quantum Technology presents a precise and rigorous
description of basic concepts in quantum technologies and how they relate to deep learning and quantum theory. Current merging of quantum theory and deep learning techniques provides the need for a source that gives readers insights into the algebraic underpinnings of these disciplines. Although analytical, topological, probabilistic, as well as geometrical concepts are employed in many of these areas, algebra exhibits the principal thread; hence, this thread is exposed using many-sorted algebras. This book includes hundreds of well-designed examples that illustrate the intriguing concepts in quantum systems. Along with these examples are numerous visual displays. In particular, the polyadic graph shows the types or sorts of objects used in quantum or deep learning. It also illustrates all the inter and intra-sort operations needed in describing algebras. In brief, it provides the closure conditions. Throughout the book, all laws or equational identities needed in specifying an algebraic structure are precisely described.

Amazon page

获取PDF电子书代发服务10立即求助
1111

未经允许不得转载:Wow! eBook » Many-Sorted Algebras for Deep Learning and Quantum Technology

评论 0

评论前必须登录!

登陆 注册