Automated Software Testing: Introduction, Management, and Performance: Introduction, Management, and Performance
Elfriede Dustin,Jeff Rashka,John Paul (Author)
Review
Written for those with some background in software engineering, Automated Software Testing: Introduction, Management, and Performance delivers a rigorous guide to the state of the art in managing automated testing in a text that will benefit anyone who tests software for a living.
First and foremost, Automated Software Testing presents a methodology for test managers called Automated Testing Lifecycle Management (ATLM). This soup-to-nuts tour of testing takes you from initial planning, budgeting, and staffing to building a test plan and choosing test tools to executing tests and even improving your testing process the next time around. Though somewhat thickly written–with plenty of software engineering terminology–this book can also be useful to more practically minded readers because of its many sample test documents. (Besides numerous lists and charts outlining the steps in the ATLM process, the book presents a sample test plan, budget estimates, and staffing guides.)
A truly standout feature is the book’s survey of currently available automated tools that can be used throughout the testing cycle, as well as how to choose the right ones for your next project. For many software testers and managers, this section alone is probably worth the price of the book.
As this book points out, test engineering is a growth field. While schools and businesses work hard to meet the demand for qualified testing professionals, this title can provide a solid guide to the best thinking on automated testing solutions that will save time and money as well as improve software quality. –Richard Dragan
Topics covered: Theory and practice of automated software testing, the Automated Testing Lifecycle Management (ATLM) process, test analysis, planning, design and execution, white-box and black-box testing, metrics, and choosing testing tools.
From the Inside Flap
Preface
Automated Software Testing addresses the challenge for today’s software professionals who are faced with real schedule deadlines and need to introduce, manage, and perform automated testing on a project. The book addresses automated testing within a client-server or Web environment.
The focus of this book is the pragmatic concerns and information needed by the software test engineer/manager who faces the necessity of performing testing more thoroughly and quickly. By the same token, these same concerns may apply to the software developer who has the responsibility for development testing (that is, unit and integration testing) and, on some projects, system testing. The book also represents an informative guide that bolsters the ability of the quality assurance engineer to perform quality reviews on test design, test procedures, and the results of test activities.
The software project manager, who is responsible for the overall development effort, may also find this book useful. The text provides the project manager with guidelines concerning the goals and objectives of the testing effort and the decision about whether to automate testing. It also offers guidance on introducing automated testing on a project and outlines the processes for performing test planning, design, development, execution, and evaluation.
The authors have worked intimately with a number of automated testing professionals around the world, who were generous enough to share their problems and concerns. One primary concern voiced by these test engineers related to the fact that the test industry does not have the kind of structured methodologies that developers have traditionally enjoyed. Similarly, project managers, test managers, and test engineers may not be familiar with the kinds of approaches that are required to perform automated testing as opposed to the traditional test approach.
Clearly, the emphasis on automated testing represents a paradigm change for the software industry. This change does not simply involve the application of tools and the performance of test automation. Rather, it is pervasive across the entire test life cycle and the system development life cycle. The approach taken by project managers, test managers, software engineers, and test engineers is altered as a result. For software professionals to successfully make the leap to automated testing, structured approaches to testing must be embraced.
Automated Software Testing is revolutionary in that it promulgates a new structured, building-block approach to the entire test life cycle, while also providing relevant test automation and associated test management guidance needed by industry test professionals.
Automated Testing
Software project managers and software developers building today’s applications face the challenge of doing so within an ever-shrinking schedule and with minimal resources. As part of their attempt to do more with less, organizations want to test software adequately, but as quickly and thoroughly as possible. To accomplish this goal, organizations are turning to automated testing.
Faced with this reality and realizing that many tests cannot be executed manually, such as simulating 1,000 virtual users for volume testing, software professionals are introducing automated testing to their projects. While needing to introduce automated testing, software professionals may not know what’s involved in introducing an automated test tool to a software project, and they may be unfamiliar with the breadth of application that automated test tools have today. Automated Software Testing provides guidance in these areas.
The growth of automated test capability has stemmed in large part from the growing popularity of rapid application development (RAD), a software development methodology that focuses on minimizing the development schedule while providing frequent, incremental software builds. The objective of RAD is to engage the user early and throughout design and development of each build so as to refine the software, thereby ensuring that it more closely reflects the needs and preferences of the user. In this environment of continual changes and additions to the software through each software build, where requirements are encouraged to evolve, software testing takes on an iterative nature itself. Each new build is accompanied by a considerable number of new tests as well as rework to existing test scripts, just as there is rework on previously released software modules. Given the continual changes and additions to software applications, automated software testing becomes an important control mechanism to ensure accuracy and stability of the software through each build.
As noted above, a primary goal of RAD is to shorten the overall development schedule, by addressing the riskiest aspects of development in early builds. As a result, test activities are undertaken at the start of the initial RAD cycle and through each subsequent RAD cycle as well. As noted in Part III of this book, test design and development represent a complex undertaking. A test effort, in fact, may be as time-consuming as the effort required to develop the software application. When the project involves the integration of commercial off-the-shelf (COTS) products, for example, the test effort may even require more resources than software development. Instances where the test team does not participate in software specification or when test is not initiated soon enough pose a risk to the project. In these situations, potential outcomes include an incomplete software test effort, an insufficient test schedule, and an unplanned extension to the development schedule to accommodate testing.
Much of the test effort required on a project now needs to be supported by automated test tools. Manual testing is labor-intensive and error-prone, and it does not support the same kind of quality checks that are possible with an automated test tool. The introduction of an automated test tool can replace mundane manual test activities with a more efficient and repeatable automated test environment, which itself improves test engineer morale and retention.
Although some automated test tools began as capture and playback tools, the functionality and capabilities of automated test tool suites have been expanding. Automated test capabilities for software products include testing of the graphical user interface, requirements compliance, load performance, code coverage, Web interface, network communications, memory leakage, and more. New capabilities continue to be added to keep pace with the growing demand for test support.
ATLM
This book concentrates on the concerns of the software test professional within the framework of an Automated Test Life-cycle Methodology (ATLM). ATLM is a structured methodology geared toward ensuring successful implementation of automated testing. The ATLM approach mirrors the benefits of modern, rapid application development efforts, where such efforts engage the user early in the development cycle. The end user of the software product is actively involved throughout analysis, design, development, and test of each software build, which is augmented in an incremental fashion.
The ATLM incorporates a multistage process consisting of six components. It supports the detailed and interrelated activities that are required to decide whether to acquire an automated testing tool. The methodology takes into account the process of introducing and optimizing an automated test tool and addresses test planning, analysis, design, development, execution, and management. The scope of the test program is outlined within the test plan, as a top-level description of test approach and implementation. The scope is further refined through the definition of test goals, objectives and strategies, and test requirements. Similar to software application development, test requirements are specified before test design is constructed. Likewise, the test program must be mapped out and consciously designed to ensure that the most efficient and effective tests for the target application are performed. Test design is developed through graphical portrayals of the test effort, so as to give project and test personnel a mental framework on the boundary and scope of the test program.
Test Training
The evolution of automated testing has given birth to new career opportunities for software engineers. In fact, while the demand for automated software test professionals has exploded, community colleges and universities have not produced a reciprocal response to help support industry demand.
Some universities that are typically more proactive in responding to changes in the software industry have already implemented software test and quality assurance courses. For example, George Mason University (GMU) provides software test and quality assurance courses (see the GMU Web site at isse.gmu/ for more information). Kansas State University (KSU) offers students several courses on the subject of software test and quality assurance and other courses that touch on the subject (see the KSU Web site at ksu/).
Purdue University offers two undergraduate courses in software engineering that cover software testing and reliability.Among other areas this center supports research projects. For more information, see the Purdue University Web site at purdue/.
The North Seattle Community College has established one of the most progressive testing curricula in the country. The college offers three levels of software testing courses (introduction, automation, and leadership) and one- and two-year software testing programs.Information concerning additional university and industry training resources is available on the author’s Web site at autotestco/.
The Automated Software Testing textbook is intended to help in classroom instruction on software testing that uses modern automated test tool capabilities. The book provides students with an introduction to the application and importance of software test, and it describes the different kinds of automated tests that can be performed. Instruction continues with the definition of the test approach, the roles and responsibilities of the test team, test planning, test design, test script development, test execution, defect tracking, and test progress reporting.
About the Authors
Automated Software Testing was developed by three software industry professionals.
Elfriede Dustin has performed as a computer systems analyst/programmer developing software applications and utilities, process and data modeling using CASE tools, and system design simulation models. She has experience supporting a variety of system application development projects, including health, financial, logistic, and enterprise information management systems. In addition, Elfriede has been responsible for implementing the entire development life cycle, from requirement analysis, to design, to development, to automated software testing. She has been a test manager and a lead consultant guiding the implementation of automated testing on many projects. Because of her automated test expertise, she has been sought out to help modify the capabilities of commercial test tool products, where her use and feedback on test products has proved invaluable.
Jeff Rashka has managed a multitude of significant information system and systems integration projects. System applications on which he has served as manager include worldwide transportation asset management, enterprise information management, financial management, bar-coded inventory management, and shipboard information systems. Jeff also has process improvement management experience in implementing the guidelines contained within the Software Engineering Institute’s Capability Maturity Model (CMM).
John Paul has worked as a senior programmer/analyst on financial and budgeting systems as well as a host of other information systems. His software development leadership responsibilities have included system analysis and design, application prototyping, and application development using a number of different methodologies and programming techniques. His software development responsibilities have included application testing using automated test tools. John has also assumed a lead role in the performance of year 2000 compliance testing.
The authors have applied their collective knowledge of software engineering, automated testing, and management to develop a book that addresses the pragmatic concerns and information needed by the software test engineer and manager. Automated Software Testing is designed to be a useful—and practical—guide for software engineers and software project managers who are responsible for software test activities.
Book Style and Organization
This book’s organization correlates with the phases, tasks, and steps of the ATLM. The sequence of the book is fashioned in a purposeful way. It addresses the reader as if he or she had just been handed a note giving that individual the responsibility for automated software testing on a project. A first question might be, “What exactly is automated testing, and why do I need it?” Part I of the book answers this question and provides other fundamental instruction allowing the would-be test to approach the new responsibility with confidence. The reader is then guided through the decision to automate testing as well as automated test tool selection and evaluation.
After receiving this fundamental instruction, the test engineer would have several more questions: “What is involved in setting up the tool?” “How do I get the test team in place?” “What early test planning is required?” Part II answers these questions. Specifically, the process for introducing an automated test tool is outlined and guidelines for structuring the test team are provided.
Part III focuses on automated test planning, analysis, design, and test automation (programming). This section of the book addresses test design techniques, which are comparable to the structured software design techniques introduced over the past 20 years. Specifically, it highlights the discipline required in the design of test automation. The goal is to give useful information on test design and test case development, so that the test engineer doesn’t have to discover (by trial and error) how to put together a good test design and set of test procedures.
Part IV helps the reader address several additional questions: “What’s involved in the performance of test?” “How do I manage my test schedule?” “How do I document and track defects?” This section provides guidelines pertaining to test execution, defect tracking, and test program status tracking. A set of best practices for the development and execution of automated test procedures is provided to assist test professionals in executing test activities in an efficient manner.
Overall, the book seeks to allay the concerns of the software test professional within the framework of the ATLM. ATLM is a structured methodology, and one that is geared toward ensuring successful implementation of automated testing. Readers with questions and comments may contact the authors via their home page at autotestco/. This Web site also provides more information on automated software testing and resources that are available to support automated software testing programs.
0201432870P04062001