Principles of Data Science:A beginner’s guide to the math and coding skills you need to be fluent in data and machine leaing:A beginner’s guide to … skills for data fluency and machine leaing

Principles of Data Science:A beginner’s guide to the math and coding skills you need to be fluent in data and machine leaing:A beginner’s guide to … skills for data fluency and machine leaing

by: Sinan Ozdemir (Author)

Publisher: Packt Publishing – ebooks Account

Publication Date: 9 Feb. 2024

Language: English

Print Length: 419 pages

ISBN-10: 1837636303

ISBN-13: 9781837636303

Book Description

Transform your data into insights with essential techniques and math to unravel the secrets hidden within your dataKey Features​Lea practical data science combined with data theory to gain maximum insight from data​See how to deploy actionable machine leaing pipelines while mitigating biases in data and models​Explore actionable case studies and see how to put your new skills to use, fast!Book Description”Principles of Data Science” bridges mathematics, programming, and business analysis, empowering readers to confidently pose and address complex data questions and construct effective machine leaing pipelines. It equips you with tools to transform abstract concepts and raw statistics into actionable insights.Beginning with cleaning and preparing data + effective data mining strategies and techniques, you’ll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Discover the statistical models that help you take control and navigate even the densest (or the sparsest) datasets and find out how to create powerful visualizations that communicate the stories your data are telling. In this edition, you will also lea advanced transfer leaing and pre-trained models for NLP and vision tasks, with a focus on application. Advanced techniques for mitigating algorithmic bias in data and models are covered, along with addressing model and data drift. Finally, you will explore medium-level data goveance including data provenance, privacy, and deletion request handling.By the end of the book, you’ll lea the fundamentals of computational mathematics and statistics while exploring mode machine leaing and large pre-trained models like GPT and BERT.What you will lea​Master data science’s core steps with practical examplesBridge math and programming through advanced stats and MLHaess probability, calculus, and models for data controlExplore transformative mode ML with large language modelsEvaluate ML success with effective metrics and MLOpsCreate visuals that convey actionable insightsQuantify and mitigate biases in data and ML modelsWho this book is for​If you are an aspiring novice data scientist ready to lea more, this book is for you. If you have the basic math skills but want to apply them in data science, or you have good programming skills but lack the necessary math, this book will also help you. Some knowledge of Python programming will also help.Table of ContentsData Science TerminologyTypes of DataThe Five Steps of Data ScienceBasic MathematicsImpossible or Improbable? – An Introduction to ProbabilityAdvanced ProbabilityBasic StatisticsAdvanced StatisticsCommunicating Data How to Tell If Your Toaster Is Leaing:Machine Leaing EssentialsPredictions Don’t Grow on Trees, or do they? – Beyond Statistical ModellingIntroduction to Transfer Leaing and Pre-trained modelsTackling Model and Data DriftDealing with Data GoveanceDealing with Data Goveance
About the Author
Transform your data into insights with essential techniques and math to unravel the secrets hidden within your dataKey Features​Lea practical data science combined with data theory to gain maximum insight from data​See how to deploy actionable machine leaing pipelines while mitigating biases in data and models​Explore actionable case studies and see how to put your new skills to use, fast!Book Description”Principles of Data Science” bridges mathematics, programming, and business analysis, empowering readers to confidently pose and address complex data questions and construct effective machine leaing pipelines. It equips you with tools to transform abstract concepts and raw statistics into actionable insights.Beginning with cleaning and preparing data + effective data mining strategies and techniques, you’ll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Discover the statistical models that help you take control and navigate even the densest (or the sparsest) datasets and find out how to create powerful visualizations that communicate the stories your data are telling. In this edition, you will also lea advanced transfer leaing and pre-trained models for NLP and vision tasks, with a focus on application. Advanced techniques for mitigating algorithmic bias in data and models are covered, along with addressing model and data drift. Finally, you will explore medium-level data goveance including data provenance, privacy, and deletion request handling.By the end of the book, you’ll lea the fundamentals of computational mathematics and statistics while exploring mode machine leaing and large pre-trained models like GPT and BERT.What you will lea​Master data science’s core steps with practical examplesBridge math and programming through advanced stats and MLHaess probability, calculus, and models for data controlExplore transformative mode ML with large language modelsEvaluate ML success with effective metrics and MLOpsCreate visuals that convey actionable insightsQuantify and mitigate biases in data and ML modelsWho this book is for​If you are an aspiring novice data scientist ready to lea more, this book is for you. If you have the basic math skills but want to apply them in data science, or you have good programming skills but lack the necessary math, this book will also help you. Some knowledge of Python programming will also help.Table of ContentsData Science TerminologyTypes of DataThe Five Steps of Data ScienceBasic MathematicsImpossible or Improbable? – An Introduction to ProbabilityAdvanced ProbabilityBasic StatisticsAdvanced StatisticsCommunicating Data How to Tell If Your Toaster Is Leaing:Machine Leaing EssentialsPredictions Don’t Grow on Trees, or do they? – Beyond Statistical ModellingIntroduction to Transfer Leaing and Pre-trained modelsTackling Model and Data DriftDealing with Data GoveanceDealing with Data Goveance

获取PDF电子书代发服务10立即求助
1111

未经允许不得转载:Wow! eBook » Principles of Data Science:A beginner’s guide to the math and coding skills you need to be fluent in data and machine leaing:A beginner’s guide to … skills for data fluency and machine leaing

评论